

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

ENGINEERING YOUR SUCCESS.

icountPD

The icountPD from Parker represents the most up-to-date technology in solid particle detection.

The design dynamics, attention to detail, and small size of the permanently mounted, on-line particle detector brings a truly innovative product to all industry. The laser based, leading-edge technology is a cost effective market solution to fluid management and contamination control.

3 Versions Available

Standard icountPD is designed for test stand, flushing skids, filter carts and other industrial applications.

icountPDR is designed for mobile equipment or any outside use other than hazardous environment.

icountPDZ is intended for applications that require a Zone II safety such as off-shore platforms or any other hazardous environment.

For Zone I applications the standard icountPD can be used within a NEMA7 enclosure.

icountPDR

Features and benefits of the icountPD include:

- Independent monitoring of system contamination trends.
- Early warning LED or digital display indicators for Low, Medium and High contamination levels.
- Moisture % RH LED indicator (optional).
- Cost effective solution in prolonging fluid life and reducing machine downtime.
- Visual indicators with power and alarm output warnings.
- Continuous performance for dependable analysis.
- Hydraulic, phosphate ester & fuel fluid compatible construction.
- Self diagnostic software.
- Fully integrated PC/PLC integration technology such as:

RS232 and 0-5 Volt, 4-20mA, and CANBUS J1939.

Typical Applications

Mobile Equipment

- Earth Moving Machinery
- Harvesting
- Forestry
- Agriculture

Industrial Equipment

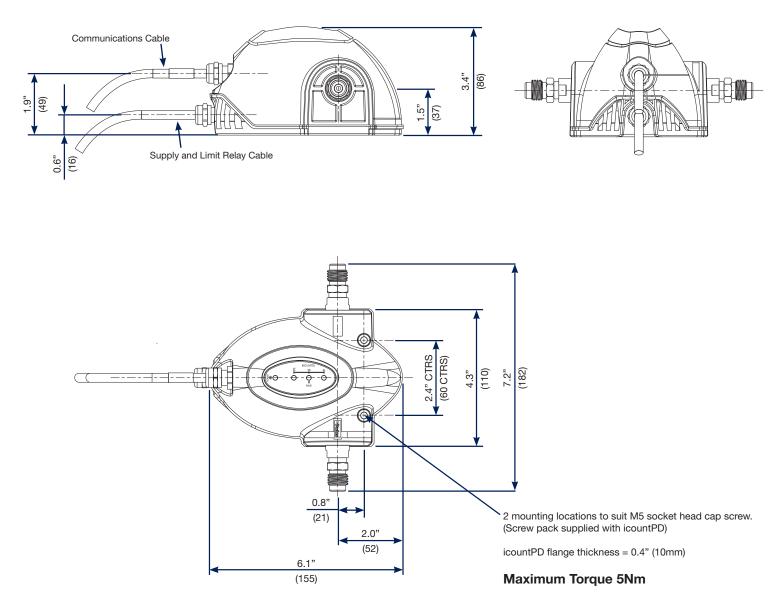
- Production Plants
- Fluid Transfers
- Pulp & Paper
- Refineries

Power Generation

- Wind Turbines
- Gearboxes
- Lubrication Systems

Maintenance

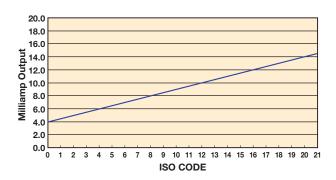
- Test Rigs
- Flushing Stands

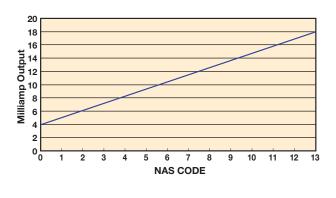

icountPD/icountPDR/icountPDZ

Features and Benefits

Diagnostic self check start-up time	5 seconds
Measurement period	5 to 180 seconds
Reporting interval through RS232	0 to 3600 seconds
Digital LED display update time	
	Every second
Limit relay output	Changes occur +/- 1 ISO code at set limit (Hysteresis ON)
	or customer set (Hysteresis OFF)
4-20mA output signal	Continuous
Principle of operation	Laser diode optical detection of actual particulates
Reporting codes	ISO 7 – 21, NAS 0 – 12, (AS 00 – 12 contact Parker)
	Icount will also report less than ISO 7, subject to the statistical uncertainty
	defined in ISO4406:1999, which is shown in the RS232, reporting results
	as appropriate e.g ">6"
Calibration	By recognized on-line methods, confirmed by the relevant International
	Standards Organization procedures
Calibration recommendation	12 months (24 months for icountPDZ)
Performance	+/- 1 ISO Code (dependant on stability of flow)
Reproducibility / Repeatability	Better than 1 ISO Code
Power requirement	Regulated 9 to 40Vdc
Maximum current draw	150mA
Hydraulic connection	icountPD: M16 x 2 hydraulic test points (5/8" BSF for aggressive version)
	icountPD Z2: Size: 066, Connection: EO 24 cone end
Flow range through the device	40 to 140 ml/min (optimum flow = 60ml/min)
Online flow range via System 20 Inline Sensors	Size 0 = 1.59 to 6.6 gpm - (optimum flow = 3.96 gpm)
	Size 1 = 6.34 to 26.4 gpm - (optimum flow = 18.5 gpm)
	Size 2 = 44.9 to 100 gpm - (optimum flow = 66 gpm)
Required differential pressure across Inline Sensors	5.8 psi (0.4 bar) minimum
Viscosity range	10 to 500 cSt, 1 to 500 cSt (icountPD Z2)
Temperature (icountPD)	Operating environment: -4°F to +140°F (-20°C to +60°C)
	Storage: -40°F to +176°F (-40°C to +80°C)
	Operating fluid: +32°F to +185°F (0°C to +85°C)
Temperature (icountPD Z2)	Operating environment: -22°F to +140°F (-30°C to +60°C)
	Storage: -40°F to +176°F (-40°C to +80°C)
	Operating fluid: +41°F to +176°F (+5°C to +80°C)
Working pressure	30 to 6,000 PSI (2 to 420 bar)
Moisture sensor calibration	±5% RH (over compensated temperature range of +10°C to +80°C)
Operating humidity range	5% RH to 100% RH
Moisture sensor stability	±0.2% RH typical at 50% RH in one year
Certification	IP66 rated (icountPD), IP69K (icountPDZ)
	EMC/RFI –EN61000-6-2:2001(icountPD), EN6100-6-2:2005 (icountPDZ)
	EN61000-6-3:2001(icountPD), EN61000-6-3:2007 (icountPDZ)
Materials	Stainless Steel case construction (icountPDZ)
	Stainless Steel hydraulic block
	Viton seals, (icountPDZ: fluorocarbon seals)
Dimensions	icountPD: 7.2" x 6.1" x 3.4" (182mm x 155mm x 86mm)
	icountPD Z2: 10.2" x 4.49" x 4.33" (260mm x 114mm x 110mm)
Weight	icoutPD: 2.9 lbs. (1.3 kg), icountPDZ: 5.73 lbs. (2.6 kg)
Default Settings	See table on page 39

icountPD


Dimensions / Installation Details



dimensions in inch (mm)

*Limit Relay Wiring Instructions NORMALLY OPEN NORMALLY CLOSED COMMON

icountPD Variable mA Output Settings

The following table can be used to equate the analog output for channels A, B, and C independently. Example: ISO code 12 is equal to 10mA.

	ISO		mA	NAS				
	0		4	00				
	1		5	0				
	2		6	1				
	3		7	2				
	4		8	3				
	5		9	4				
	6		10	5				
	7		11	6				
	8		12	7				
	9		13	8				
	10		14	9				
	11		15	10				
)	12		16	11				
;	13		17	12				
)	14		18	**				
;	15		19	**				
)	16		20	ERROR				
;	17							
)	18							
;	19	4 20		ut oottingo				
)	20			ut settings				
;	21		Setting					
)	**	mA current = (ISO Code / 2) +4						
;	**	eg. 10mA = (ISO 12 / 2) +4						
)	**	or						
	**	190.0	$da = (m\Delta)$	current $= 4$ *2				

ISO Code = (mA current - 4) *2 eg. ISO 12 = (10mA -4) *2 NAS Setting mA current = NAS Code +5 eg. 15mA = NAS 10 +5 or NAS Code = mA current -5 eg. NAS 10 = 15mA - 5

Variable Voltage Output Settings

The variable voltage output option has the capability of two different voltage ranges: a 0-5Vdc range as standard, and a user-selectable 0-3Vdc range. The full list of commands on how to change the voltage output is available from Parker. The following tables can be

mA 4.0 4.5

5.0

5.5

6.0 6.5 7.0 7.5 8.0 8.5

9.0

9.5

10.0

10.5 11.0 11.5 12.0 12.5

13.0

13.5

14.0 14.5 15.0 15.5 16.0 16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

**

**

**

**

OVERRANGE

OVERRANGE

ERROR

used to relate the analog output to an ISO or NAS code.

For example, in a 0-5Vdc range, ISO code 16 is eaual to an output of 3.5Vdc. In a 0-3Vdc range, ISO code 8 is equal to an output of 1.0Vdc.

Table relating ISO codes to voltage output

ISO	Err	0	1	2	3	4	5	6	7	8	9	10	11
0-5Vdc	<0.2	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5
0-3Vdc	<0.15	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3
													_
ISO	12	13	14	15	16	17	18	19	20	21	22	Err	
0-5Vdc	2.7	2.9	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.5	4.7	>4.8	
0-3Vdc	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	>2.45	

Table relating NAS codes to voltage output

	0				0	•										
ISO	Err	00	0	1	2	3	4	5	6	7	8	9	10	11	12	Err
0-5Vdc	<0.4	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3	3.6	3.9	4.2	4.5	>4.6
0-3Vdc	<0.2	N.S.	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	>2.8

icountPD Display Parameters (ISO 4406/NAS 1638)

Digital display indication

The digital display will show the actual measured codes, the channel (µ) size and the user defineable limits. Visible display of the channel size and user definable limits will alternate.

The order of trigger for both of the codes and moisture sensor option is:

- Solid digit(s) = code(s) that • are at or below the set point (limit)
- Flashing digit(s) = code(s) that are above the set point (limit)

The display for ISO4406 and NAS1638 are identical. The ISO display is shown below.

code lights will trigger based on the customer settings.

The order of trigger will be:

- Solid green = one ISO code, or better, below the set point (limit)
- Blinking green = ISO code at the set point (limit)
- Solid red = one ISO code above the set point (limit)
- Blinking red = two ISO codes, or more, above the set point (limit)

that can be included when specifying the icountPD. The moisture sensor reports on the saturation levels of the fluid passing through the icountPD sensing cell. The output is a linear scale, reporting within the range of 5% saturation to 100% saturation.

Saturation	4-20mA	0-3Vdc	0-5Vdc
5%	4.8	0.15	0.25
25%	8	0.75	1.25
50%	12	1.50	2.50
75%	16	2.25	3.75
100%	20	3.00	5.00

icountPD Auxiliary Flow Device

This simple to use flow control device fits on the downstream (outlet) side of the icountPD and is fitted with a differential pressure valve that adjusts the system flow to a range inside the icountPD specifications.

The flow control device will operate correctly between 150 psi (10.3 bar) and 2900 psi (200 bar) and the return back to an open system of 0 psi (0 bar) (DP = 2900 psi, 200 bar).

P/N ACC6NN019

Optional Accessories						
	Part N	umber				
Description	Mineral/Fuel	Phosphate Esters	IPD	IPDR	IPDZ	
1 Meter Hose Length	ACC6NN001	ACC6NN002	Х			
2 Meter Hose Length	ACC6NN003	ACC6NN004	Х			
5 Meter Hose Length	ACC6NN005	ACC6NN006	Х			
1/4" BSP Test point	ACC6NN007	ACC6NN008	Х			
1/8" BSP Test point	ACC6NN009	ACC6NN010	Х			
1/8" NPT Test point	ACC6NN011	ACC6NN012	Х			
Single Point Sampler	SPS2021	SPS2061	Х	Х	Х	
US Power Supply	ACC6	NE010	Х	Х	Х	
European Power Supply	ACC6	NN013	Х	Х	Х	
5 meter, M12, 8-pin plug and socket cable kit*	ACC6NN014	ACC6NN015	X			
Deutsch 12-pin connector kit	ACC6NN016		X	Х		
RS232 to USB converter	ACC6NN017		Х	Х	Х	
12" long M12 8-way RS232 & power cable kit	ACC6NN018		x		Х	
External Flow Device	ACC6	NN019	Х	Х	Х	
M12, 12 way cable	ACC6	NN024		Х		

* Cable Kit consists of two 5 meter cables to enable all output

options (Communications cable and Relay/Power Supply cable).

icountPDZ ATEX Approved Online Particle Detector

For use in explosive and hazardous areas

The icountPD Particle Detector from Parker represents the most up to date technology in solid particle contamination analysis. This compact, permanently mounted laser-based ATEX approved particle detector module is designed for use in Zone II areas and is housed in a robust Stainless Steel IP69K approved enclsoure that provides a cost effective solution to fluid management and contamination control.

Product Features:

- Independent monitoring of system contamination trends.
- Assembled in an approved and certified Stainless Steel enclosure to comply with ATEX Directive 94/9/EC.
- Can be used in explosive and hazardous areas.
- ATEX Zone II.
- Certified to CE Ex II 3GD,Ex nA IIC T4 Gc,Ex tc IIIC Dc SIRA 09ATEX4340X and IECEx SIR 09.0137X (-30°C<Ta<+60°C).
- Moisture & %RH indicator (optional).

- Warning limit relay outputs for low, medium and high contamination levels.
- Continuous performance for prolonged analysis.
- Self diagnostic software.
- Full PC/PLC integration technology such as:- RS232 and 0-5Volt, 4-20mA, CAN(J1939) (Contact Parker for other options.
- Set up and Data logging support software included.

icountPD Ordering Information

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8
IPD	1	2	2	2	2	1	30

BOX 1: Ba	BOX 1: Basic Assembly					
Symbol	Description					
IPD	Standard Particle Detector					
IPDR	Particle Detector - Robust Construction					
IPDZ	Particle Detector - Hazardous (Zone 2)					

BOX 2: Flu Symbol	BOX 2: Fluid Type ^{1, 2} Symbol Description						
1	Mineral Oil						
2	Phosphate Ester (iPD, iPDR only)						
3	Aviation Fuel (4 channel) (iPD, iPDZ only)						

BOX 3: Ca Symbol	libration Description	
2	MTD	

BOX 4: Display Symbol Description					
1	None (iPDR, iPDZ only)				
2	LED (iPD only)				
3	Digital (iPD only)				

Standard Default Settings for all icountP	Ds
Comms echo	OFF
Verbose errors	OFF
STI Senors used	OFF
Reporting standards	ISO
Particle limits	19/18/15
Measurement period	60 seconds
Reporting interval	30 seconds
Power-on mode	AUTO
Auto start delay	5 seconds
Date Format	dd/mm/yy
Default if Options Fitted	
Relay hysteresis	ON
Relay operation for particle limits	ON
Relay operation for moisture sensor limits	ON
Digital display orientation	0 degrees
Digital display brightness level	3-mid
0-5V/0-3V output voltage range	0-5V
Moisture sensor limit	70%

Symbol D	Description
1 N	No (iPDR only)
2 Y	fes

BOX 6:	Communication ^{3, 4}
0	D O. II'.

Symbol	Pressure Setting
2	RS232 / 4-20mA
3	RS232 / 0-5V (iPD, iPDR only)
5	RS232 / CAN-bus (J1939)

BOX 7: M Symbol	loisture Description	
1	No	
2	Yes	

BOX 8: Ca Symbol	able Connector⁵ Description
10	Deutsch DT Series (iPD, iPDR only)
30	M12, 8-pin plug connector (iPD, iPDZ only)
40	M12, 12-pin plug connector (iPDR only)

Notes:

- 1. When "3" is selected in Box 2, "1" must be selected in Box 7.
- 2. Aviation Fuel option can also be used for diesel fluids.
- 3. For iPD and iPDR units, when "5" is selected in Box 6, "10" must be selected in Box 8.
- 4. Contact Parker for additional communication options (RS485, GPRS, LAN, WiFi, Sat, etc.)
- The required connecting cables are available as a kit. The kit consists of two 5 meter cables (Communications cable and Relay/Power Supply cable) to enable all output options. See Accessory table on page 7 for applicable part number.

Notes
